Computation of effective nonlinear coupled electro-mechanical properties of graphene-reinforced nanocomposites

نویسندگان

  • Xiaoxin LU
  • Julien Yvonnet
  • Fabrice Detrez
  • Jinbo Bai
چکیده

Tunnel effect is a possible mechanism to explain the apparent large electric conductivity and nonlinear electric behavior of graphene-reinforced nanocomposites with polymer matrix. In this work, a numerical modeling framework is proposed to evaluate the effective electric conductivity in polymer composites reinforced with graphene sheets, taking into account the electrical tunneling effect, which allows conduction between graphene sheets at small nanometric distances. A nonlinear Finite Element formulation with a distance function field is introduced to model the nonlocal and nonlinear effects introduced by the tunnelling effect conduction model within the polymer matrix between close graphene sheets. In addition, to avoid meshing the thickness of the graphene sheets and in view of their very high aspect ratio, a highly conducting surface model is employed . The computed effective conductivity is evaluated over representative volumes containing arbitrary distributed graphene sheets. To evaluate the degradation of electrical performances with decohesion of graphene sheets under mechanical stress, a nonlinear cohesive model [4] is introduced to describe the mechanic property of the interphase between graphene and matrix. The parameters for the cohesive zone are identified by molecular dynamics. The proposed model is demonstrated to predict the variation of percolation threshold under mechanical stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational Studies on Mechanical Properties of Carbon-based Nanostructures Reinforced Nanocomposites

Computational methods can play a significant role in characterization of the carbon-based nanocomposites by providing simulation results. In this paper, we prepared a brief review of the mechanical properties of carbon nanotubes (CNTs), Graphene, and coiled carbon nanotube (CCNTs) reinforced nanocomposites. Varies simulation studies in mechanical properties of nanocomposites including represent...

متن کامل

Small Scale Effects on the Large Amplitude Nonlinear Vibrations of Multilayer Functionally Graded Composite Nanobeams Reinforced with Graphene-Nanoplatelets

   The main purpose of the present investigation is to analyze more comprehensively the size-dependent nonlinear free vibration response of multilayer functionally graded graphene platelet-reinforced composite (GPLRC) nanobeams. As a consequence, both of the hardening stiffness and softening stiffness of size effect are taken into consideration by implementation of the nonlocal str...

متن کامل

A comprehensive review on modeling of nanocomposite materials and structures

This work presents a historical review of the researches procured by various scientists and engineers dealing with the nanocomposite materials and continuous systems manufactured from such materials. Nanocomposites are advanced type of well-known composite materials which have been reinforced with nanosize reinforcing fibers and/or particles. Such materials can be better suit for the industrial...

متن کامل

Modeling and Optimization of Mechanical Properties of PA6/NBR/Graphene Nanocomposite Using Central Composite Design

Thermoplastic elastomer of PA6/NBR reinforced by various nanoparticles have wide application in many industries. The properties of these materials depend on PA6, NBR, and nanoparticle amount and characteristics. In this study, the simultaneous effect of NBR and graphene nanoparticle content on mechanical, thermal properties, and morphology of PA6/NBR/Graphene nanocomposites investigated by Cent...

متن کامل

Nonlinear Magneto-Nonlocal Vibration Analysis of Coupled Piezoelectric Micro-Plates Reinforced with Agglomerated CNTs

The aim of this article is to analyze nonlinear electro-magneto vibration of a double-piezoelectric composite microplate-system (DPCMPS) pursuant to the nonlocal piezoelasticity theory. The two microplates are assumed to be connected by an enclosing elastic medium, which is simulated by the Pasternak foundation. Both of piezoelectric composite microplates are made of poly-vinylidene fluoride (P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016